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Inflammatory reactivity is unrelated to childhood
adversity or provoked modulation of nociception

Gillian J. Bedwell?, Luyanduthando Magadi®, Peter Kamerman®, Mark R. Hutchinson®®¢, Romy Parker?,
Victoria J. Madden®"*

Abstract \
Adversity in childhood elevates the risk of persistent pain in adulthood. Neuroimmune interactions are a candidate mechanistic link
between childhood adversity and persistent pain. We aimed to clarify whether immune reactivity is associated with provoked differences in
nociceptive processing in adults with a range of childhood adversity. Pain-free adults (n = 96; 61 female; median [range] age: 23 [18-65]
years old) with a history of mild to severe childhood adversity underwent psychophysical assessments before and after in vivo neural
provocation (high-frequency electrical stimulation) and, separately, before and after in vivo immune provocation (influenza vaccine
administration). Psychophysical assessments included the surface area of secondary hyperalgesia after neural provocation and change in
conditioned pain modulation (test stimulus: pressure pain threshold; conditioning stimulus: cold water immersion) after immune
provocation. Immune reactivity was operationalised as interleukin-6 and tumour necrosis factor-a expression after in vitro
lipopolysaccharide provocation of whole blood. We hypothesised associations between immune reactivity and (1) childhood adversity,
(2) induced secondary hyperalgesia, and (3) vaccine-associated change in conditioned pain modulation. We found that provoked
expression of proinflammatory cytokines was not statistically associated with childhood adversity, induced secondary hyperalgesia, or
vaccine-associated change in conditioned pain modulation. The current findings from a heterogenous sample cast doubt on 2 prominent
ideas: that childhood adversity primes the inflammatory system for hyper-responsiveness in adulthood and that nociceptive reactivity is
linked to inflammatory reactivity. This calls for the broader inclusion of heterogeneous samples in fundamental research to investigate the
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psychoneuroimmunological mechanisms underlying vulnerability to persistent pain.
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1. Introduction

Alarge body of evidence shows that childhood adversity elevates
the risk of persistent pain in adulthood.*® Strikingly, this body of
evidence includes no studies from low- and middle-income
countries (LMICs) or the African continent, where childhood
adversity is disproportionately high,? adversity is interpreted with
diverse cultural perspectives, and social support may enhance
resilience.*” In addition, genetic diversity** and different
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environmental immune exposures® may shape the mechanistic
pathways that link childhood adversity to persistent pain in people
living in LMICs. Clarifying how childhood adversity increases risk
of persistent pain in LMICs is necessary to inform targeted
interventions.

Neuroimmune reactivity is a candidate mechanistic link. Adults
with a history of childhood adversity display elevated interleukin
(IL)-6 and tumour necrosis factor (TNF)-a'#2%%°*—a proinflam-
matory profile that may confer vulnerability to persistent pain.>*
Indeed, proinflammatory cytokine expression is increased in
painful inflammatory conditions such as inflammatory bowel
disease,®' rheumatoid arthritis,>? and interstitial cystitis/bladder
pain syndrome®” and predicts the number of painful sites in
bladder pain syndrome.®” Adults with a history of childhood
adversity also display heightened amygdala responsiveness and
vigilance to threatening stimuli,’"*®%6® suggesting reduced
inhibitory control.*® Childhood adversity coupled with low
socioeconomic status is associated with diminished conditioned
pain modulation.®? Childhood adversity is also associated with
greater peaks and slower decay of temporal summation.”*
Reduced conditioned pain modulation and increased temporal
summation predict worse pain outcomes at follow-up.'” To-
gether, these data link childhood adversity to pronociceptive
modulation that likely elevates vulnerability to persistent pain.

Experimental immune provocations offer an opportunity to
capture the functional “reactivity” of the immune system to
a standardised stimulus. One useful in vivo immune provocation
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is the influenza vaccine.®® A matched, in vitro immune provoca-
tion is achieved by stimulating whole blood with lipopolysaccha-
ride. Whereas the in vivo model captures the considerable
complexity of immune and cross-system interactions that occur
within the dynamic living person, the in vitro model may enhance
clarity by locking the snapshot of responsiveness to the time of
the blood draw, thus allowing tighter interindividual comparison
than a real-life provocation.

Experimental neural provocations offer a comparable oppor-
tunity to study the “reactivity” of the neural system to provocation.
High-frequency electrical stimulation®!2%:20-5064  mimics the
nociceptive barrage to the central nervous system after tissue
damage without causing actual tissue damage.>® The resulting,
time-limited secondary hyperalgesia is mediated by heterotopic
long-term potentiation-like processes in the spinal dorsal horn®
and can be quantified by the anatomical spread (ie, surface area)
and magnitude of hyperalgesia.

This study aimed to test whether neuroimmune reactivity
presents a mechanistic link between childhood adversity and an
adult’s vulnerability to persistent pain. This study tested 3
hypotheses in adults: (1) childhood adversity will predict
expression of IL-6 and TNF-a after in vitro immune provocation
and (2) provoked expression of IL-6 and TNF-a will predict
psychophysical pain—related outcomes after in vivo neural
provocation, and, separately, (3) after in vivo immune
provocation.

2. Methods
2.1. Study overview

This was a basic experimental study involving humans. The study
protocol was approved by the University of Cape Town, Faculty of
Health Sciences Human Research Ethics Committee (560/2021),
registered at clinicaltrials.gov (NCT06127693), and locked online
at Open Science Framework https://osf.io/y34pa/, and we
followed the CONSORT reporting guidelines®® (Supplementary
file: Section 1, Table S1, http://links.lww.com/PAIN/C299). All
protocol deviations are explained in Supplementary file: Section
2, Table S2, http://links.lww.com/PAIN/C299.

Otherwise healthy pain-free adult volunteers, together covering
a range of self-reported childhood adversity ratings, underwent
a two-visit procedure, starting at similar times on 2 consecutive
mornings. On morning 1, participants had their blood drawn,
answered questionnaires, and underwent baseline psychophys-
ical testing. Thereafter, participants were exposed to the neural
provocation, and psychophysical testing was repeated. Next,
participants received the immune provocation. On morning 2,
participants had their blood drawn (results not presented in this
report), answered questionnaires, underwent psychophysical
testing, and exited the study. All participants underwent both
neural and immune provocations so that the reactivity of both
systems was characterised within each individual. Data were
collected from June 2022 to September 2022 and from May 2023
to September 2023 at the University of Cape Town.

2.2. Participants

We recruited pain-free adult volunteers (18-65 years old) using
posters, social media, and word of mouth. Volunteers received
study details via email and were screened for eligibility (Table 1)
through an online questionnaire using the REDCap electronic
data capture tools hosted at the University of Cape Town.'8'®
Participants provided written informed consent. Participants
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could withdraw at any stage during or up to 1 hour after each
testing session, with options to retain or destroy their data.
Participants were compensated 300 ZAR (~16 USD) in cash
upon procedure completion.

2.2.1. Screening and enrolment

To recruit participants with a varied range in childhood adversity,
volunteers completed the 28-item Childhood Trauma
Questionnaire-Short Form (CTQ-SF).® Total CTQ-SF scores were
used to categorise volunteers into 3 recruitment groups: (1)
minimal (CTQ-SF score 25-36), (2) moderate (37-67), and (3)
severe (>67) childhood adversity.> We aimed to enrol 32
participants per childhood adversity group, enrolling on a “first
to qualify and participate” approach. Group allocation was used
for recruitment purposes only and all participants, irrespective of
group allocation, underwent the same procedure.

2.3. Experimental manipulations
2.3.1. In vivo immune provocation

For the in vivo immune provocation, participants received the
current season’s tetravalent influenza vaccine in the deltoid
muscle of the test arm (ie, the arm receiving the high-frequency
electrical stimulation, contralateral to the arm used for the blood
draw). Plasma IL-6 typically peaks approximately 24 hours after
influenza vaccination.5? Greater IL-6 expression at baseline is
associated with increased pain at the vaccination site, body
aches, and headaches after the influenza vaccine, '° linking IL-6
to nociceptive processing in this model.

2.3.2. In vitro immune provocation

The in vitro immune provocation required incubation of peripheral
blood with lipopolysaccharide (LPS). Elevated expression of IL-6
to either in vitro®” or in vivo®"®® LPS-provocation is associated
with lower pressure pain threshold, linking cytokine responsive-
ness to nociceptive processing. On morning 1, peripheral blood
was drawn into a TruCulture tube preloaded with LPS and
incubated at 37°C for 24 hours. Thereafter, cells were separated
from the supernatant and tubes were frozen at an initial —20°C,
followed by —80°C for longer storage while awaiting batch
analysis. All stimulated samples were assayed in duplicate (R&D
3-plex Discovery assay) at a dilution factor of 1:30, using Luminex
xMAP technology, to estimate the levels of IL-1B, IL-6, and TNF-
a. To estimate cytokine levels, we fitted a weighted quadratic
model to define the standard curve and used the raw
fluorescence values to interpolate estimates for samples that fell
outside the assay’s expected range (details in Supplementary file:
Section 3, http://links.lww.com/PAIN/C299). In accordance with
the study protocol, we report data for IL-6 and TNF-a, and our
statistical analyses used a composite score of the mean of
z-scores for IL-6 and TNF-a expression.

2.3.3. In vivo neural provocation

For the in vivo neural provocation, participants received high-
frequency electrical stimulation (HFS) at 1 forearm. High-
frequency electrical stimulation was delivered using a constant
current stimulation system (DS7A, Digitimer Limited, Hertford-
shire, United Kingdom) to 1 pair of specialised surface electro-
des on the test arm, as previously described.* High-frequency
electrical stimulation was delivered at 10 times the current of the
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Exclusion criteria.

Exclusion criteria Safety risk Confounding risk
General HFS Influenza vaccine Psychophysical tests Stimulated IL-6 and TNF-«
Not fluent in English X
Incompetence to consent and participate, eg, X
acute psychosis or high suicide risk
Pregnancy X X
Electrical implants (eg, pacemaker) X
Metal implants in the area receiving the HFS X
Tattoos in the area receiving the HFS X
Any visible injury or open wounds in the area X
receiving the HFS
Cardiovascular disorders X
Known history of allergic reactions to
vaccinations
Already received current season’s influenza X
vaccination
Chronic pain (pain on most days for the past 3 X X
mo)
Diabetes mellitus X X
Peripheral vascular disease X X
Sensory impairment of areas to undergo X X
psychophysical testing
Use of medication that could alter skin sensitivity X X
(eg, analgesic medication, topical medical
creams in areas to undergo psychophysical
testing)
Medication used to alter immune function (eg, X
NSAIDs, steroids)
Smoking habit X
Febrile illness in the past 4 wk X

Reasons for each criterion are specified using crosses in the applicable column.

HFS, high-frequency electrical stimulation; IL, interleukin; NSAIDs, nonsteroidal anti-inflammatory drugs; TNF, tumour necrosis factor.

individual’s detection threshold, which was determined using an
adaptive staircase method (see details in Supplementary file:
Section 4, http://links.lww.com/PAIN/C299). The HFS con-
sisted of five 1-second trains, using a two-millisecond pulse
width of 100-Hz frequency, with a 9-second break between
trains.

2.4. Primary and secondary psychophysical outcomes
(hypotheses 2 and 3)

Vulnerability to persistent pain was operationalised differently for
each hypothesis, given the distinct experimental manipulations.
For hypothesis 2, the HFS neural provocation largely targets
spinal cord mechanisms; therefore, vulnerability to persistent pain
was operationalised using static psychophysical tests of the (1)
surface area (primary outcome) and (2) magnitude (secondary
outcome) of HFS-induced secondary hyperalgesia to mechanical
stimulation. For hypothesis 3, the influenza vaccine immune
provocation typically has a systemic effect; therefore, vulnerability
to persistent pain was operationalised using dynamic psycho-
physical tests of (1) conditioned pain modulation (primary
outcome) and (2) temporal summation (secondary outcome).
These different operationalisations aimed to provide broader
phenotyping of each participant.

2.4.1. Primary outcome for hypothesis 2: surface area of
mechanical secondary hyperalgesia

The surface area of secondary skin hyperalgesia (in cm?) was
assessed using a 128-mN von Frey filament (MARSTOCK, Schrie-
sheim, Germany), as described previously* (Fig. 1), at 30, 45, and
60 minutes after the HFS induction. We included each participant’s 3
measures of surface area across each of the 3 time points in our
statistical analysis (protocol deviation 1 of 4; Supplementary file:
Section 2, Table S2, http://links.mw.com/PAIN/C299).

2.4.2. Secondary outcome for hypothesis 2: magnitude of
mechanical secondary hyperalgesia

The magnitude of secondary hyperalgesia to mechanical
punctate stimulation was assessed adjacent to the electrode,
using 2 punctate “pinprick” stimulators that exerted forces of 128
mN and 256 mN (MRC Systems, Heidelberg, Germany).
Participants provided stimulus ratings using the Sensation and
Pain Rating Scale (SPARS) (Fig. 2).“° Ratings of a single set of
these stimuli were taken before and 35, 50, and 65 minutes after
the HFS induction. We included ratings for each stimuli at
baseline and each of the 3 follow-up points for each participant in
our statistical analysis (protocol deviation 2 of 4; Supplementary
file: Section 2, Table S2, http://links.lww.com/PAIN/C299).
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Figure 1. Eight-radial-lines approach to estimating surface area of secondary hyperalgesia. Viewing from left to right: An image of 8 radial lines originating at the
electrode, at 45° to each other (left). Dots along the lines are 1 cm apart and indicate the sites for test stimuli. An example of a mapped area of secondary
hyperalgesia (right). The orange lines indicate the border of the estimated area of secondary hyperalgesia. Figure created in BioRender. Madden, T (2025) https://

BioRender.com/q32i088.

2.4.3. Primary outcome for hypothesis 3: change in
conditioned pain modulation

We estimated conditioned pain modulation (CPM) at the lumbar
region (primary test site; in line with and 2 cm lateral to L2) to
capture the systemic effect of the provoked immune response
and at the deltoid insertion (secondary test site near the
vaccination site), to capture the local effects of the provoked
immune response. First, pressure pain threshold (test stimulus)
was assessed with a hand-held algometer and a rate of change in
pressure of ~5 N per second until report of first pain. Second, the
participant’s contralateral hand to the vaccination site was
immersed in circulating cold water of ~3 to 5°C (conditioning
stimulus). Third, when pain in the immersed hand reached +20
on the SPARS,“° pressure pain threshold was reassessed with
the contralateral hand still immersed. Fourth, the hand was
removed and wrapped in a towel for recovery. Fifth, when the
participant reported that the previously immersed hand felt
“normal again,” the pressure pain threshold was reassessed

(results not reported here). This paradigm has excellent test-ret-
est reliability in intrasession and 3-day test intervals.?” Condi-
tioned pain modulation was estimated by subtracting the
pressure pain threshold before immersion from the pressure
pain threshold during cold water immersion. The dependent
variable for hypothesis 3 was the change in CPM between
mornings, ie, CPM 24 hours after the influenza vaccine (ie,
morning 2) minus CPM before the influenza vaccine (ie, morning
1), such that a negative score would represent less efficient
modulation on morning 2 than on morning 1.

2.4.4. Secondary outcome for hypothesis 3: change in
temporal summation

Temporal summation (TS) was assessed before CPM at both the
lumbar and deltoid test sites by subtracting the SPARS rating of
a single stimulation from the SPARS rating of the final of 16
stimulations at 60 Hz using a 256 mN Von Frey filament." The

the exact point at which
what you feel transitions

to pain

| ¢—— non-painful »

painful |

|
I |
-50 0

no sensation

|
+50
most intense pain
you can imagine

Figure 2. Sensation and pain rating scale (SPARS) adapted from Madden, Kamerman.“® On the left of the scale, the “non-painful” range operates from —50—“no
sensation” to 0—"the exact point at which what you feel transitions to pain.” On the right of the scale, the “painful” range operates from 0 to +50—"“most intense
pain you can imagine.” Figure created in BioRender. Madden, T. (2025) https://BioRender.com/j200079.
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dependent variable for hypothesis 3 was the change in TS
between both mornings, ie, TS 24 hours after the influenza
vaccine (ie, morning 2) minus TS before the influenza vaccine (ie,
morning 1), such that a positive score will represent more efficient
summation on morning 2 than on morning 1.

2.5. Exploratory outcomes

2.5.1. Static and dynamic light touch and single electrical
stimulation

As exploratory outcomes to inform future studies, we also
assessed SPARS ratings to static (32 mN von Frey filament)®*
and dynamic (soft brush)®® light touch and single electrical
stimulation (2 ms pulse duration; current 10x individual electrical
detection threshold)?" before and after the HFS induction, at the
same time points as mechanical punctate stimulation.

2.6. Potential confounding factors

Candidate confounders were prioritised for assessment: positive
childhood experiences, long-term stress, depression and anxiety,
asthma, COVID-19 infection, chronic and recent illnesses, and
sleep (for details on the outcome measures for each potential
confounding factor, see Supplementary file: Section 5, http://links.
Iww.com/PAIN/C299). The process of selecting candidate con-
founders was guided by a four-pronged approach: we constructed
a directed acyclic graph, consulted with experts in the field,
thoroughly reviewed the literature, and evaluated the feasibility of
assessing of potential confounders. For each candidate con-
founder, we tested for an association with the study outcome or
relationship of interest. Total score on the CTQ-SF was also
included as a potential confounder for hypotheses 2 and 3.

2.7. Procedure

Figure 3 shows the study procedure. Blood drawn at the start of
the procedure on morning 1 was used for the in vitro LPS immune
provocation. The 24-hour period after the influenza vaccine was
administered (on morning 1) coincides with the approximate peak
immune response to the influenza vaccine.>> The 24-hour
circadian rhythmicity of endogenous cortisol is thought to
influence variability in innate immune responses. In the early
morning, cortisol levels are high and cytokine levels are low; in the
late afternoon, cortisol levels are low and cytokine levels are high.
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Data on the relationship between circadian-driven changes in
cortisol and LPS-provoked cytokines are conflicting, with some
studies finding a negative association between endogenous
cortisol and LPS-provoked cytokines, '**® and others finding no
relationship.22 To account for the potential influence of circadian
rhythm-driven variability on innate immune responses, all testing
sessions began before 12:00 noon.%%6®

2.7.1. Blinding of participants

Participants were blinded to the research questions and
hypotheses of this study. The study information sheet merely
informed participants that “we want to understand how early life
experiences affect the immune and neural systems.” To assess if
blinding was maintained, participants were asked at the end of
the procedure to explain what they thought the purpose of the
study was. The assessor (G.J.B.) judged if blinding was
maintained or broken based on the participant’s response, using
conservative criteria—ie, leaning towards confirming unblinding if
given any hint of that possibility. Broken blinding is reported
descriptively, and sensitivity analyses were conducted to in-
vestigate the influence of broken blinding on the study results.

2.7.2. Blinding of the assessor

The assessor (G.J.B.) was blinded to each participant’s childhood
adversity group allocation but not to the study aims. After each
testing procedure, the assessor completed a blinding assessment
for each participant, for which the assessor stated (or guessed) in
which group (mild, moderate, or severe childhood adversity) each
participant belonged and rated their confidence on a Likert scale
(“not at all confident,” “not confident,” “l don’t know,” “confident,”
“extremely confident”). Broken blinding was assessed using the x°
test (protocol deviation 3 of 4; Supplementary file: Section 2, Table
S2, http://links.lww.com/PAIN/C299) and reported descriptively,
and sensitivity analyses were conducted to investigate the
influence of broken blinding on the study resullts.

2.8. Statistical analysis
2.8.1. Sample size calculations

The target sample size needed to balance pragmatism with
adequate power. In the absence of suitable pilot data to inform
a sample size calculation and the unavailability of methods to
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Figure 3. Study procedure. The first blood draw on morning 1 was used for the in vitro LPS provocation. The second blood draw on morning 2 is for another study,
and results are not reported in this report. CPM, conditioned pain modulation; HFS, high-frequency electrical stimulation; SH, secondary hyperalgesia; TS,

temporal summation.
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calculate sample size to support all 3 hypotheses, we estimated
the sample size that would provide reasonable power for each
hypothesis with alpha 0.05, power 0.8, and used the largest
estimate of the 3, which was n = 96. Therefore, we aimed for
complete datasets from 96 participants.

After data collection and before finalising the R analysis script,
we recognised an error in interpreting the sample size calcu-
lations: the target sample size should have been 85 for
a correlation coefficient of 0.3. However, we wished to use the
data we had collected from the full sample of 96 participants.
Therefore, we used G*Power'® to conduct a sensitivity power
analysis (Supplementary file: Section 6, Fig. S1, http://links.lww.
com/PAIN/C299), which estimated that our final sample size (n =
96) provided a priori power to detect an effect size of r = 0.275
with power 0.8 and alpha 0.05. This calculation was completed
before the actual study data were processed.

2.8.2. Statistical analysis plan

Before the formal data were analysed, the study protocol and pilot
data analysis script were registered and locked on the Open
Science Framework’s online platform [https://osf.io/y34pa/]. For
all 3 research questions, we followed best practice by using both
visual data analysis and formal modelling to investigate the
relationships specified in the 3 hypotheses. The specifics of the
models were determined by the data features to achieve the best-
fitting model that is interpretable. Data were analysed using R
(version 4.4.0, packages: readr,”® tidyverse,”’ magrittr,*®
ggplot2,%° dplyr,”? Imtest,”® ImerTest,*® brms,® emmeans,®
tidybayes,?® broom,®® broom.mixed,” scales,”® patchwork,*®
sjPlot®®) in RStudio.®®

2.8.3. Assessment of model fit

An assessment of model fit was conducted for the unadjusted
and covariate-adjusted models. Four assumptions were
assessed: (1) linearity, (2) homoscedasticity, (3) normally distrib-
uted residuals, and (4) no influential observations. The model was
deemed unfit for these data if any assumptions were violated.

2.8.4. Manipulation checks

For hypothesis 3, we conducted 2 manipulation checks. First,
a statistically significant difference in pressure pain threshold
before compared to during the cold water immersion indicated
a successful CPM procedure. Second, for TS, a statistically
significant difference in SPARS ratings to a single stimulus
compared to the 16M stimulus indicated a successful TS
procedure.

3. Results
3.1. Participants

A total of 101 participants were enrolled and tested in this study.
Five participants’ data were excluded from the formal data
analysis (n = 3 data were not saved because of technical issues;
n = 1 did not complete testing [morning 2]; n = 1 disclosed
a smoking habit after the procedure) (Fig. 4). Therefore, data from
96 participants (61 females; median [range] age: 23 [18-65] years
old) were included in the formal data analysis. There were
complete datasets for all outcomes except for TS at the lumbar
site, for which data were missing for 1 participant because of
a technical issue. This participant was excluded only from the
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analysis of TS at the lumbar site. A summary of the descriptive
statistics are presented in Table 2 and Supplementary file:
Section 7, Table S3, http://links.lww.com/PAIN/C299.

3.2. Manipulation checks

3.2.1. Pressure pain threshold and conditioned pain
modulation

On average, CPM was successfully induced at the sample level at
both test sites (deltoid and lumbar) and at both test sessions
(before and after the influenza vaccine): Pressure pain threshold
was higher during the cold water immersion than before, at both
the lumbar and deltoid test sites (Fig. 5). On average, the cold
water conditioning stimulus increased pressure pain threshold by
20.49N (95% CI: 17.80; 23.17; P < 0.001) at the lumbar site and
13.08 N (95% CI: 1.37; 14.80; P < 0.001) at the deltoid site
(Fig- 5, and Supplementary file: Section 8, Table S4, http://links.
lww.com/PAIN/C299).

3.2.2. Sensation and pain rating scale rating to mechanical
stimuli and temporal summation

On average, TS was successfully elicited at the sample level at
both test sites (deltoid and lumbar) and at both test sessions
(before and after the influenza vaccine): SPARS ratings were
higher to the 16th of the 16 stimuli than to the single mechanical
stimulus at both the lumbar and deltoid sites (Fig. 6). On average,
there was a 9.50 (95% ClI: 6.99; 12.00; P < 0.001) unit increase in
SPARS rating at the lumbar site and an 8.57 unit (95% CI: 6.26;
10.88; P < 0.001) increase in SPARS rating at the deltoid site to
the 16th mechanical stimulation (Fig. 6, and Supplementary file:
Section 8, Table S5, http://links.lww.com/PAIN/C299). There-
fore, TS was successfully induced at the sample level at both test
sites (deltoid and lumbar) and at both test sessions (before and
after the influenza vaccine).

3.3. Hypothesis 1: relationship between childhood adversity
and provoked cytokine expression

We tested whether the CTQ-SF total score was positively
associated with provoked cytokine expression using simple
linear regression. Both unadjusted and covariate-adjusted
models satisfied the underlying assumptions of linear regression
(Supplementary file: Section 9, Fig. S2, http://links.lww.com/
PAIN/C299). Neither model found that CTQ-SF total score was
associated with cytokine expression (P-values = 0.18 and 0.09;
Fig. 7 and Supplementary file: Section 9, Table S6, http://links.
Iww.com/PAIN/C299).

3.4. Hypothesis 2: relationship between provoked cytokine
expression and induced secondary hyperalgesia

We tested whether provoked cytokine expression was positively
associated with the surface area (primary outcome) and
magnitude (secondary outcome) of secondary hyperalgesia.

3.4.1. Primary analysis: surface area of secondary
hyperalgesia

Conventional and robust regression modelling approaches
violated the underlying assumptions of linear regression, showing
noteworthy heterogeneity of variance (Supplementary file: Sec-
tion 10, Figs. S3 & S4, http://links.lww.com/PAIN/C299), likely
because of the high number of zero values (~14%) for the
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CONSORT Flow Diagram

Enrolment

Assessed for eligibility (n=545)

Not eligible (n=234):

- Eligibility form incomplete (n=58)

- Smoking habit (n=43)

- Received current year’s influenza vaccination (n=36)
- Chronic pain (n=23)

- Tattoo on forearm (n=18)

- Allergy to influenza vaccine (n=10)

- Electrical implant (n=10)

- Medication that alters immune function (n=9)
- Diabetes mellitus (n=7)

- Wound on forearm (n=4)

- Metal implant in forearm (n=3)

- Pregnant (n=3)

- Skin sensitivity (n=3)

- CTQ-SF incomplete (n=2)

- Cardiovascular disease (n=2)

- Problems with sensation (n=2)

- High risk for suicidality (n=1)

v

Severity of childhood adversity group already filled*
(n=210

A\

Allocation

Randomisation not applicable in this study

\4

Enrolled and receive

d both the neural and

immune provocation (n=101).

\4

Follow-up

Assessed

(n = 100)

Did not attend Morning 2 testing session (n=1)

Excluded from analysis (n=4):

- Data were not saved due to technical issues (n=3)

\4

v

- Disclosed a smoking habit after the procedure (n=1)

Analysis Analysed (n=96)

Figure 4. CONSORT flow diagram. *We aimed to enrol 32 participants per childhood adversity group, enrolling on a “first to qualify and participate” approach. See
Screening and enrolment for more details. CTQ-SF, Childhood Trauma Questionnaire-Short Form.

outcome (ie, no area of secondary hyperalgesia). Hurdle models
are designed for data with many zero values and no upper bound.
They incorporate 2 separate components: a conditional linear
regression that models non-zero outcome data only and a logistic
regression that assesses the value of the designated independent
variables in predicting zero values. Provoked cytokine expression
was not associated with surface area. This was true for the
conditional (non-zero) and logistic regression portions of both
unadjusted and covariate-adjusted hurdle models (Supplemen-
tary file: Section 10, Fig. S5, Table S7, http://links.lww.com/
PAIN/C299).

3.4.2. Secondary analysis: magnitude of secondary
hyperalgesia

The unadjusted and covariate-adjusted models satisfied the
underlying assumptions of linear regression (Supplementary file:
Section 10, Fig. S6, http://links.lww.com/PAIN/C299). Neither
model found that provoked cytokine expression was associated
with the magnitude of secondary hyperalgesia (P-values = 0.94
and 0.77; Supplementary file: Section 10, Fig. S7 and Table S8,
http://links.lww.com/PAIN/C299).

3.5. Hypothesis 3: relationship between provoked cytokine
expression and change in conditioned pain modulation and
temporal summation

3.5.1. Primary analysis: change in conditioned pain
modulation at the lumbar and deltoid test sites

We tested whether provoked cytokine expression was negatively
associated with a change in CPM at the lumbar (primary test site)
and the deltoid (secondary test site). Conditioned pain modulation
was no different before vs after the influenza vaccination, at either
the lumbar (P = 0.32) or the deltoid site (P = 0.76; Supplementary
file: Section 11, Table S9, http://links.lww.com/PAIN/C299).

The unadjusted and covariate-adjusted models satisfied the
underlying assumptions of linear regression (Supplementary
file: Section 11, Figs. S8 and S9, http://links.lww.com/PAIN/
C299). Neither model found that provoked cytokine expres-
sion was associated with the change in CPM at the lumbar
(P-values = 0.08 and 0.07, Fig. 8A and Supplementary file:
Section 11, Table S10, http://links.lww.com/PAIN/C299) or at
the deltoid test site (P-values = 0.27 and 0.33; Fig. 8B and
Supplementary file: Section 11, Table S11, http://links.lww.
com/PAIN/C299).
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Descriptive statistics of participants’ characteristics.
Characteristics Full sample History of mild childhood History of moderate History of severe P for between-
N =96 adversity (CTQ-SF score:  childhood adversity (CTQ- childhood adversity (CTQ- group
25-36) N = 32 SF score: 37-67) N = 32 SF score: 68-125) N = 32 differences
Age (y) 23 (21 10 30) 23 (21 to 27) 22 (21 10 25) 24 (22 1o 35) 0.21
Sex (n male:female) 35:61 8:24 20:12 7:25 <0.001*
Cytokines (pg/mL)
Provoked IL-6 31,331 (20,947.9 to 31,331 (20,992.5 to 22,502.3 (17,268.2 to 31,6425 (31,331.0 to 0.02
31,644.3) 31,649.7) 31,649.7) 31,642.5)
Provoked TNF-a 4032.8 (2884.1 t0 5402.0) 3967 (3044.4 to 5403.4) 3577.7 (2767.5t0 4749.5)  4411.3 (3423.3 10 6284.9) 0.34
Current used for HFS (mA)  0.17 (0.13 to 0.23) 0.17 (0.16 to 0.21) 0.20 (0.17 t0 0.27) 0.13(0.12 10 0.23) 0.001
Surface area of secondary
hyperalgesia (cm?)
30 min after HFS 22.19 (6.19 to 37.60) 10.80 (3.93 to 28.08) 22.97 (12.37 t0 32.01) 31.22 (3.04 10 47.32) 0.08
45 min after HFS 17.28 (8.05 t0 36.13) 15.71 (5.50 to 28.96) 19.83 (12.37 to 35.54) 18.85 (7.66 to 42.51) 0.22
60 min after HFS 17.5 (3.83 t0 31.90) 14.92 (3.93 t0 26.02) 17.48 (3.63 to 32.50) 20.03 (2.16 t0 39.76) 0.129
Ratings to mechanical
punctate stimulation (SPARS)
Before HFS —21.81(—3435t01.27) —2091(—32361t0231) —18.72(—31.93t02.26) —25.13(—39.25t00.44) 0.53
35 min after HFS —12.10(—30.88103.03) —18.71(—=24.71t04.22) —11.29(-26.63104.79) —9.35(—36.16t0 0.15) 0.53
50 min after HFS —9.62 (—25.97 t0 3.03) —10.64 (—22.67t08.27) —7.94 (—26.14 10 3.62) —7.46 (—26.06 to 2.94) 0.92
65 min after HFS —7.86 (—26.78 to 5.61) —7.86 (—22.58 to 8.69) —2.34 (—28.65 to 5.46) —9.80 (—33.37 t0 3.21) 0.77
Conditioned pain modulation
(change in pressure pain
threshold, N)
Lumbar test site
Before immune 20.8 (12.50 to 29.90) 19.35 (14.64 t0 22.94) 22.33 (11.86 to0 30.64) 19.98 (8.18 to0 32.60) 0.80
provocation
After immune 18.8 (7.98 to 27.70) 15.23 (6.78 to 28.60) 22.80 (12.08 to 33.25) 17.88 (4.70 to0 22.05) 0.07
provocation
Deltoid test site
Before immune 11.53 (5.94 10 18.76) 6.78 (4.93 t0 13.81) 14.33 (9.49 to 22.25) 13.38 (5.19 t0 19.60) 0.01
provocation
After immune 11.68 (6.03 to 17.16) 7.28 (5.33 t0 12.65) 13.53 (10.38 to 24.20) 12.00 (5.49 t0 17.70) 0.01
provocation
Temporal summation
(change in SPARS ratings,
16th minus 1st)
Lumbar test site
Before immune 6.19 (1.27 t0 19.25) 7.22 (1.511017.82) 5.87 (1.35t0 16.51) 5.00 (0.48 to 21.29) 0.24
provocation
After immune 4.64 (1.11 t0 11.20) 7.86 (3.06 to 21.65) 6.15 (1.401 to 10.69) 1.79 (0.32 t0 6.94) 0.01
provocation
Deltoid test site
Before immune 7.50 (1.05 to 17.96) 8.06 (2.44 t0 13.45) 8.06 (1.036 to 18.10) 5.95 (0.77 t0 19.98) 0.78
provocation
After immune 3.89 (—0.02 to 10.10) 4.92 (1.3510 10.18) 2.86 (—0.91 t0 6.98) 3.02 (—0.36 to 12.46) 0.68
provocation
Adverse childhood 49.0 (33.0 to 74.0) 30.5 (27.8 t0 33.0) 49.0 (44.5 t0 56.0) 83.0 (74.0 t0 93.0) <0.001
experiences (CTQ-SF)t
Subscale: physical 8.0 (5.0t0 14.3) 5.0 (6.0 10 6.0) 7.5 (6.0 t0 10.0) 16.0 (13.0 t0 20.3) <0.001
abusef
Subscale: emotional 10.5(7.0 t0 19.0) 6.5 (5.0 10 8.0) 10.0 9 to 13.5) 21.0 (19.0 to 22.0) <0.001
abusef
Subscale: sexual 5.0 (5.0t0 13.0) 5.0 (5.0t0 5.0 5.0 (5.0t0 9.5) 14.0 (6.8 10 20.3) <0.001
abusef
Subscale: physical 8.0 (5.0t0 13.0) 5.0 (6.0 t0 6.0) 9.0 (6.0t0 10.3) 14 (10.8 t0 17.0) <0.001
neglectt
Subscale: emotional 13.0 (7.0 0 19.0) 6.0 (5.0108.3) 13.0(9.0t0 15.3) 20.0 (18.0t0 21.3) <0.001
neglectt

Data are presented as median (IQR), mean (£SD), or n (%). All Pvalues < 0.05 are presented in bold.
* Statistical test used for sex was a Pearson x test. Statistical test for all other variables was an ANOVA.
1 Possible total score range for the CTQ-SF: 25-125.

T Possible total score range for each subscale of the CTQ-SF: 5-25.
CTQ-SF, Childhood Trauma Questionnaire-short form; SPARS, sensation and pain rating scale; HFS, high-frequency electrical stimulation.
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Figure 5. Boxplots of pressure pain threshold before and during cold water immersion, faceted by session (ie, morning 1 and 2) and test site.
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Figure 6. Boxplots of ratings to single and 16th mechanical stimulation, faceted by session (ie, morning 1 and 2) and test site.

Copyright © 2025 by the International Association for the Study of Pain. Unauthorized reproduction of this article is prohibited.



November 2025 e Volume 166 ¢ Number 11

www.painjournalonline.com e599

~~

.. :

o
e -
oL g °
.aE [} °®
n °
E’_'D ° oo °
%% e o ad [} . ° °

°0 o o ° ° e
bl o S ° 8 °e o
m—l .. ° (Y ° : +..
.E_ B o900 ‘_h_—_k#.f- °
T = 0 ) °
oL ° o
L~ ) ®
5@ °, » ° |
88 e ® o . ° ° .
o

(xj({’ ° ..o =
> N °, ° = °
O 4= o ®
= 0O ° .
n‘C

© = o

(<))

£ 2-

~—" o

4I0 8I0 1(I)0

60
CTQ-SF total score

Figure 7. Relationship between CTQ-SF score and provoked cytokine expression (n = 96). CTQ-SF, Childhood Trauma Questionnaire-Short Form.

3.5.2. Stratifying by sex

Data suggest that females, but not males, show reduced CPM to
an in vivo LPS challenge.?®> Consequently, we conducted an ad
hoc exploratory analysis that stratified the relationship between
our in vitro LPS-provoked cytokine expression and change in
CPM at the lumbar and deltoid test sites. We observed no
evidence of an association between provoked cytokine expres-
sion and change in CPM in either males or females at both test
sites (Supplementary file: Section 11: Fig. S10, http://links.lww.
com/PAIN/C299).

3.5.3. Secondary analysis: change in temporal summation at
the lumbar and deltoid test sites

We tested whether provoked cytokine expression was positively
associated with a change in TS. Temporal summation de-
creased from before to after the influenza vaccination at the
deltoid site (P = 0.02) but not at the lumbar site (P = 0.09). On
average, the influenza vaccine reduced TS by 3.19 (95% Cl:
—5.96; —0.42) units at the deltoid site (Supplementary file:
Section 11, Table S12, http://links.lww.com/PAIN/C299).
Therefore, TS was successfully altered by the in vivo immune
provocation (ie, influenza vaccine) only at the deltoid site at the
sample level.

The unadjusted and covariate-adjusted models satisfied the
underlying assumptions of linear regression (Supplementary file:
Section 11, Figs. S11 and S12, http://links.lww.com/PAIN/C299).
Neither model found that provoked cytokine expression was
associated with the change in TS at the lumbar (P-values = 1.0

and 0.92; Fig. 9A and Supplementary file: Section 10,
Table S13, http://links.lww.com/PAIN/C299) or at the deltoid test
site (P-values = 0.80 and 0.66; Fig. 9B and Supplementary file:
Section 11, Table S14, http://links.lww.com/PAIN/C299).

3.6. Blinding assessments
3.6.1. Blinding of participants

Six (of 96) participants were unblinded to 1 of the 3 hypotheses,
n = 2 for hypothesis 1 and n = 4 for hypothesis 3. No participant
was unblinded to hypothesis 2. Sensitivity analyses were
conducted for hypotheses 1 and 3, excluding unblinded
participants. They showed no noteworthy changes in the
association between CTQ-SF total score and provoked cytokine
expression (hypothesis 1) (Supplementary file: Section 12, Table
S15, http://links.lww.com/PAIN/C299) nor between provoked
cytokine expression and change in CPM or TS (hypothesis 3)
(Supplementary file: Section 12, Tables S16-S19, http://links.
Iww.com/PAIN/C299).

3.6.2. Blinding of the assessor

Data on the assessor’s guess of group allocation were missing
for 1 participant (of 96). The assessor correctly guessed
group allocation for 44 participants (46.3% of n = 95). Visual-
isation suggested no relationship between guess accuracy and
guess confidence (Supplementary file, Section 12, Fig. S13,
http://links.lww.com/PAIN/C299), but a x° test showed a statis-
tically significant difference (P-value = 0.01) between the
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Figure 8. The relationship between provoked cytokine expression and change in conditioned pain modulation after immune provocation (influenza vaccination) at

the lumbar test site (A) (n = 96) and deltoid test site (B) (n = 96).

assessor’'s guessed group allocation and the actual group
allocation, indicating the assessor’s guesses of group allocation
were not random (as would be seen if blinding was maintained);
therefore, blinding may have been broken. The planned sensitivity
analysis was deemed unnecessary, given the lack of association
between LPS-provoked cytokines and total score on the
CTQ-SF.

3.7. Exploratory analyses

3.7.1. Relationship between provoked cytokine expression
and static and dynamic light touch and single electrical
stimulation

Both the unadjusted and covariate-adjusted models found no
evidence of an association between provoked cytokine expres-
sion on static light touch (P-values = 0.45 and 0.48), dynamic
light touch (P-values = 0.35 and 0.22), or single electrical
stimulation (P-values = 0.46 and 0.29) (Supplementary file:
Section 13, Table S20, http://links.lww.com/PAIN/C299).

3.7.2. Relationship between each subscale of the childhood
trauma questionnaire-short form and provoked cytokine
expression

We conducted an exploratory post-hoc analysis on the associ-
ation between each subscale of the CTQ-SF and provoked
cytokine expression. The sexual abuse subscale of the CTQ-SF
was weakly correlated with provoked cytokine expression
(r = 0.21, 95% CI: 0.01; 0.4, P = 0.037) (Supplementary file:
Section 13, Fig. S14, http://links.lww.com/PAIN/C299). None of

the 4 other subscales of the CTQ-SF were correlated with
provoked cytokine expression.

3.7.3. Interaction between positive childhood experiences
and adverse childhood experiences on provoked cytokine
expression

Data were available on positive childhood experiences (using total
score from the Positive Childhood Experiences Questionnaire) for
49 (of 96) participants. Given the possibility that positive child-
hood experiences may moderate the influence of childhood
adversity on the inflammatory response, we used these data to
explore for an effect of the interaction between positive childhood
experiences and total CTQ-SF score (ie, adverse childhood
experiences) on provoked cytokine expression. The interaction
term was not statistically significant (P = 0.73), and the main
effect of the CTQ-SF score remained statistically insignificant (P =
0.36) for this subsample of 49 participants (Supplementary file:
Section 13, Table S21, http://links.lww.com/PAIN/C299).

4. Discussion

This study aimed to take the first steps towards clarifying neural
and immune reactivity as a mechanistic link between childhood
adversity and nociceptive processing. In a 2-day experiment, we
successfully induced secondary hyperalgesia, CPM, and TS and
used an influenza vaccine to manipulate pain-related psycho-
physical outcomes. None of the hypotheses was upheld: LPS-
provoked in vitro expression of proinflammatory cytokines was
not related to childhood adversity (hypothesis 1), nor to induced
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Figure 9. The relationship between provoked cytokine expression and change in temporal summation after the immune provocation (influenza vaccination) at the

lumbar test site (A) (n = 95) and deltoid test site (B) (n = 96).

secondary hyperalgesia (hypothesis 2), nor to vaccine-
associated change in CPM or TS (hypothesis 3).

Childhood adversity has been consistently linked to elevated
expression of resting proinflammatory cytokines. However, its
association with LPS-provoked proinflammatory cytokines is
more controversial. Meta-analytical synthesis of 25 studies
estimated a significant, although small, association between
childhood adversity and elevated resting expression of IL-6 and
TNF-a in healthy adults.® The few studies that have investigated
the relationship between childhood adversity and LPS-provoked
proinflammatory cytokine expression present conflicting results.
Converse to our results, in 2 different adult cohorts, total score on
the CTQ-SF was associated with elevated expression of LPS-
provoked IL-6 but not TNF-a.'®2® Notably, these cohorts
included adults with or without current symptoms of depression
or anxiety or a diagnosis of schizophrenia or schizoaffective
disorder. Conversely, in adults institutionalised during their first
year of life — an assumed adverse childhood event — no
association was found between institutionalisation and either
LPS-provoked IL-6 or TNF-a.'® Adults who were separated from
their biological parents during their first years of life presented with
lower levels of LPS-provoked IL-6 than controls raised by their
biological parents.'* This discrepancy in the relationship between
childhood adversity and resting vs provoked cytokine expression
may be because LPS-provocation of proinflammatory cytokines
provides insight into the propensity of the immune system to

mount a response (ie, immune reactivity), which is distinctly
different from the resting state of the immune system.

An additional stressor may be needed to unmask an influence
of childhood adversity on cytokine expression. Two studies found
that adversities in childhood alone did not predict elevated
expression of LPS-provoked cytokines; however, childhood
adversities coupled with recent stress did predict the elevated
expression of LPS-provoked cytokines.?*®® These results
highlight the layering of multiple challenges to reveal an underlying
phenotype.

The consistent positive association between childhood adver-
sity and resting proinflammatory cytokine expression suggests
that childhood adversity may have long-lasting effects on tonic
immune activity. On the other hand, that childhood adversity is
associated with provoked proinflammatory cytokine expression
only in the presence of recent stress suggests that a childhood
adversity may not have a long-lasting effect on provoked immune
activity, and a recent challenge (eg, recent stress) may have
short-term effects on phasic immune activity. However, the
relative importance of tonic vs phasic immune activity to
meaningful clinical outcomes remains unknown.

Individuals with chronic pain exhibit elevated resting
proinflammatory cytokines. This relationship suggests that
immune reactivity may support hyperresponsiveness of
nociceptive processing, thus indirectly contributing to the
persistence of pain. However, this study’'s systematic
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deconstruction of immune reactivity and spinal nociceptive
reactivity in humans calls this idea into question. These
conflicting findings must be held in balance with previous work
in which in vivo LPS-provoked cytokines were associated with
the surface area of capsaicin-induced hyperalgesia and
allodynia in humans.?2 In vivo LPS may be more potent than
in vitro LPS: the live system contains more cells to scale both
direct and indirect responses to provocation than a 1-mL
blood sample, and active blood circulation likely enhances the
reach of signalling proteins to target cellular interactions to
increase responsiveness in a way that cannot be achieved
during standing tube incubation.

In addition, an immune provocation coupled with a neural
provocation, rather than an immune provocation alone, may be
required to sufficiently challenge the nociceptive system.®”
Hutchinson, Buijs®® found that in vivo LPS-provoked cytokines
were not associated with hyperalgesia and allodynia; however,
after administration of a capsaicin neural provocation, in vivo
LPS-provoked cytokines were associated with capsaicin-
induced hyperalgesia and allodynia, suggesting that systemic
inflammation exacerbates capsaicin-induced hyperalgesia. Our
study electrically induced secondary hyperalgesia in an immune-
unchallenged system and found no association between
secondary hyperalgesia and in vitro LPS-provoked proinflamma-
tory cytokines. However, had we induced secondary hyper-
algesia after administering the in vivo immune provocation, ie,
influenza vaccination, induced secondary hyperalgesia may have
been associated with vaccine-associated elevated expression of
proinflammatory cytokines. Although the influence of systemic
inflammation on HFS-induced secondary hyperalgesia is un-
known, given administration of intradermal capsaicin induces
hyperalgesia and allodynia that are thought to reflect the
heterotopic long-term potentiation-like processes that is also
seen with the HFS induction model, it is likely that systemic
infammation ~ would also  exacerbated  HFS-induced
hyperalgesia.

4.1. Strengths

The study’s sample presents genetic and environmental features
that differ from the features of samples that are more typical in
heterogeneous psychoneuroimmunology studies. Systematic
reviews on the relationships between childhood adversity, pain,
and immune reactivity typically involve homogenous samples
from high-income countries with similar genetic and environ-
mental factors. When drawing inferences about fundamental
principles of psychoneuroimmunology, leaning into a literature
that draws on a small slice of the human population runs the risk
of biased conclusions. This is particularly important in light of
genetic variability and environmental determinants in immune
function: African ancestry is associated with larger immune
variability and more proinflammatory phenotypes than European
ancestry,®”**5" and immune functioning is constantly shaped by
environmental microbiota.?” Our sample included participants
with a variety of ancestries, including African, European, and
South Asian; therefore, this study lays the foundation for future
research to unpack the influence of genetic variability on immune
reactivity in response to childhood adversity. We argue that there
is an urgent need to correct the current dearth of immune-
phenotyping and psychoneuroimmunology studies in low- and
middle-income countries.®”

In addition to the strength of this study’s diverse sample, this
study upheld the principles of open science: the protocol was
registered at clinicaltrials.gov and locked online at Open Science

PAIN®

Framework, all protocol deviations were declared, and deidenti-
fied data are available at https://osf.io/y34pa/.

4.2. Limitations

Although the influenza vaccine is commonly used for clinical
prophylaxis in South Africa, we are not aware of previous work to
characterise it as an experimental provocation in our
population—and this study did not assess the in vivo immune
response to the influenza vaccine. Similarly, it is unknown
whether administering 2 different annual (2022 and 2023)
influenza vaccinations contributed to differences in responses
to the influenza vaccination immune challenge, although the
statistical analysis did control for this. Follow-up assessments of
CPM and TS were assessed at a single time point that aligned
with the average peak in IL-6 after the influenza vaccine.®?
However, the cytokine response to influenza vaccine varies
between individuals. Consequently, follow-up assessments of
CPM and TS may have missed the peak inflammatory response
to the influenza vaccine challenge in some participants. This
study included pain-free adults with varied severity of childhood
adversity, on the assumption that these individuals have variable
levels of as-yet-unrevealed vulnerability to persistent pain.
However, that our sample had no clinical pain may limit the
study’s generalisability to clinical pain populations. This sampling
decision reflected our priority of understanding how childhood
adversity influences vulnerabilities in the nociceptive and in-
flammatory systems that may lead to persistent pain.

We did not collect self-report data on participants’ ethnicity
and ancestry because self-reported ethnicity is a poor proxy for
genetic ancestry.*? Anecdotally, we observed physical character-
istics indicating diverse ethnicities and genetic ancestries. The
concept of childhood adversity also introduces complexities to
the current line of inquiry: adversity is understood differently in
different contexts, as shown by the variable performance of the
physical neglect subscale of the CTQ-SF, which may reflect
poverty rather than neglect.®® Similarly, corporal punishment is
still an accepted disciplinary approach in some South African
communities, raising questions about whether all items in the
physical abuse subscale reflect physical abuse. The CTQ-SF also
has no items for witnessing domestic abuse or witnessing or
being a victim of crime, which are common childhood adversities
in South Africa. Despite these limitations, the CTQ-SF has good
validity® and is commonly used in South African research.®
Hence, it is probably an adequate, albeit imperfect, indicator of
childhood adversity in our context.

5. Conclusion

The current findings from a heterogenous sample cast doubt on 2
prominent ideas: that childhood adversity primes the inflamma-
tory system for hyper-responsiveness in adulthood and that
nociceptive reactivity is linked to inflammatory reactivity. These
important null findings highlight the value of testing research
hypotheses in heterogenous samples from diverse contexts to
clarify fundamental psychoneuroimmunological mechanisms
underlying vulnerability to persistent pain and lay robust
foundations of knowledge.
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